166 research outputs found

    The frontal system of the Antarctic Circumpolar Current : marine mammals as ocean explorers

    Get PDF
    In this thesis, I describe large-scale and small-scale features of the Antarctic Circumpolar Current (ACC) by merging conductivity-temperature-depth (CTD) data obtained by novel animal-borne sensors with data obtained by more conventional means. Twenty-one CTD-Satellite Relay Data Loggers (CTD-SRDLs) were attached to Southern elephant seals (Mirounga leonina) on South Georgia in 2004 and 2005. This was part of a larger international study (Southern Elephant Seals as Oceanographic Samplers; SEaOS), in which I played a major role in developing the oceanographic approach used to integrate physical data from a range of sources, and the means to link biological findings to oceanographic parameters. The development of animal-borne oceanographic sensors and their potential place within an ocean observing system is reviewed initially. Then, I describe the Series 9000 CTD-SRDL in detail, discussing its performance in the lab and during two field experiences with Southern elephant seals and Weddell seals (Leptonychotes weddellii ). Following this, a detailed study of the ACC frontal system in the South Atlantic is presented that uses merged Argo float data and CTD-SRDL data. The structure of the frontal field revealed by this unique dataset is examined, and unprecedented insight into its variability is obtained. Amongst the important findings is that, contrary to most climate models, our in situ data suggest a northward shift of the ACC east of 40W in 2004 and 2005 compared to previous work. Next, two CTD-SRDL sections are presented to identify the locations of the ACC fronts across Drake Passage, and an empirical relationship between upper ocean temperature and baroclinic mass transport is used to determine the transport through Drake Passage at the times of the sections. This technique is a powerful complement to more conventional means of data collection in this region, especially given the ability of the seals to conduct "sections" at times when ship-based fieldwork is logistically most challenging, i.e. in the winter time. The CTD-SRDLs do not only record hydrographic data, but simultaneously record seal movements and diving behavior. This enables insight to be obtained on the behavioral and physiological responses of Southern elephant seals to spatial environmental variability throughout their circumpolar range. The resulting energetic consequences of these variations could help explain recently observed spatially varying population trends. With a stable population at South Georgia and declining populations at Kerguelen and Macquarie Island. This study also highlights the benefits to the sensorcarrying animals themselves by showing the usefulness of this approach in examining the sensitivity of top predators to global and regional-scale climate variability. More importantly, I conclude that, by implementing animal-borne sensors into ocean observing strategies, we not only gain information about global ocean circulation and enhance our understanding of climate and the corresponding heat and salt transports, but at the same time we increase our knowledge about ocean’s top predators, their life history and their sensitivity to climate change

    Fishing for drifts : detecting buoyancy changes of a top marine predator using a step-wise filtering method

    Get PDF
    This research was partly funded by a Natural Environment Research Council grant [NE/E018289/1]. Further, a PhD studentship in Marine Biology partially funded by the Natural Environment Research Council [NE/L501852/1] and the University of St Andrews 600th Scholarship supported this work.In southern elephant seals (Mirounga leonina), fasting and foraging related fluctuations in body composition are reflected by buoyancy changes which can be monitored by changes in drift rate. Here, we present an improved knowledge-based method for detecting buoyancy changes from compressed and abstracted dive profiles received through telemetry. We applied this step-wise filtering method to the dive records of 11 southern elephant seals, which identified 0.8% to 2.2% of all dives as drift dives. At the beginning of the migration, all individuals were strongly negatively buoyant. Over the following 75 to 150 days, the buoyancy reached a peak close to or at neutral buoyancy, indicative of a seal’s foraging success. Ground-truthing confirmed that this new knowledge-based method is capable to reliably detect buoyancy changes in the dive records of drift diving species using abstracted dive profiles. This affirms that the abstraction algorithm conveys sufficient detail of the geometric shape of drift dives for them to be identified. It also suggest that using this step-wise filtering method, buoyancy changes could be detected even in old datasets with compressed dive information, for which conventional drift dive classification previously failed.Publisher PDFPeer reviewe

    Drift diving by hooded seals (Cystophora cristata) in the Northwest Atlantic Ocean

    Get PDF
    This work was funded through the Atlantic Seal Research Programme, International Governance Programme (GBS and MOH), the Greenland Institute of Natural Resources (ARA), and a CFI grant to YFW. The authors also acknowledge the support of the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) in the completion of this study. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions (LB).Many pinniped species perform a specific dive type, referred to as a ‘drift dive’, where they drift passively through the water column. This dive type has been suggested to function as a resting/sleeping or food processing dive, and can be used as an indication of feeding success by calculating the daily change in vertical drift rates over time, which reflects the relative fluctuations in buoyancy of the animal as the proportion of lipids in the body change. Northwest Atlantic hooded seals perform drift dives at regular intervals throughout their annual migration across the Northwest Atlantic Ocean. We found that the daily change in drift rate varied with geographic location and the time of year and that this differed between sexes. Positive changes in buoyancy (reflecting increased lipid stores) were evident throughout their migration range and although overlapping somewhat, they were not statistically associated with high use areas as indicated by First Passage Time (FPT). Differences in the seasonal fluctuations of buoyancy between males and females suggest that they experience a difference in patterns of energy gain and loss during winter and spring, associated with breeding. The fluctuations in buoyancy around the moulting period were similar between sexes.Publisher PDFPeer reviewe

    A novel approach to using seabed geomorphology as a predictor of habitat use in highly mobile marine predators : implications for ecology and conservation

    Get PDF
    Department for Business, Energy, and Industrial Strategy (BEIS, formerly DECC) Offshore Energy Strategic Environmental Assessment programme funded the purchase of the tags and their deployment (OESEA-14-47) and supported HMEW (OESEA-20-118). DJFR was supported by NERC National Public Good- National Capability funding to SMRU (NE/R015007/1). MIDC was supported by project EcoSTAR, funded under NERC INSITE Phase II (grant no. NE/T010614/1). Funds for open access publication fees were from the research grants of supervisors at University of St Andrews.Understanding how marine predators find patchily distributed prey resources in a dynamic environment is key to identifying important ecological areas for ecosystem-level conservation management. However, the mechanisms underpinning important foraging areas often result from complex interactions between static and dynamic covariates (e.g. topography and currents). Modelling habitat associations with hydrodynamic processes is rarely useful when attempting to identify and characterise foraging areas across an individual’s foraging range. Investigating the influence of static habitat features on predator behaviour can provide a more tractable baseline understanding of habitat associations, upon which additional complexity can be added. Seabed gradient covariates (e.g. slope and aspect) are often used, yet such metrics are computed at singular user-defined resolutions, and provide limited ecological insight when used in isolation. Instead, categorising the seabed into geomorphological features may provide better characterisation of seabed structure. Here we explore the utility of a pattern recognition algorithm to delineate whole geomorphological features (“geomorphons”) on the seabed (e.g. valleys, ridges, footslopes) from bathymetry data, and examine the influence of geomorphology on marine predator habitat use. We demonstrate the potential application of this approach in a case study, examining the influence of geomorphons on the at-sea behaviour of a highly mobile predator inhabiting shelf seas: the grey seal (Halichoerus grypus). We analyse GPS tracking data from three seals tagged in the southern North Sea, an area with heterogeneous geomorphology. We use hidden Markov models (HMMs) to infer foraging and travelling behaviour and model the effect of different feature types on the probability of switching between states. All three seals showed an increased probability of transitioning from travelling to foraging when encountering slopes, footslopes and hollows, and foraging activity was concentrated at slopes on the fringes of the Dogger Bank. We hypothesise that such features may host prey aggregations, or lead to increased prey capture success. The results suggest the importance of such areas for grey seals in the southern North Sea, a region undergoing rapid and widespread anthropogenic habitat change. This method could be incorporated into future species distribution models to improve estimates of predator distribution, informing conservation management and marine spatial planning.Publisher PDFPeer reviewe

    Nanoplasmonic Ecosystem Sensors

    Get PDF
    Rapid advances in design, materials, and fabrication technologies over the past decade have allowed scientists to construct novel sensors to map and investigate the marine environment in new ways. This paper investigates the potential of nanoplasmonic sensors to further improve our understanding of marine ecosystems by providing information on pressing physical, chemical, and biological ocean parameters

    Winter seal-based observations reveal glacial meltwater surfacing in the southeastern Amundsen Sea

    Get PDF
    Funding: This work is funded by the UK Natural Environment Research Council under the iSTAR Programme through grants NE/J005703/1 (K.J.H., D.P.S., B.G.M.W.); European Research Council (under H2020-EU.1.1.) under research grant COMPASS (Climate-relevant Ocean Measurements and Processes on the Antarctic continental Shelf and Slope, grant agreement ID: 741120, K.J.H., Y.Z.); National Science Foundation Division of Polar Programs and Natural Environment Research Council under the research grant TARSAN (Thwaites-Amundsen Regional Survey and Network, NSF PLR 1738992 and NE/S006419/1, K.J.H.).Y.Z. is supported by China Scholarship Council and University of East Anglia. L.C.B. is supported by a Wallenberg Academy Fellowship (WAF 2015.0186) and Swedish Research Council grant (VR2019-04400) of S. Swart.Determining the injection of glacial meltwater into the polar oceans is crucial for quantifying the response of the climate system to ice sheet mass loss. However, meltwater is poorly observed and its pathways poorly known, especially in winter. Here we present winter meltwater distribution in the eastern Amundsen Sea near Pine Island Glacier, revealing a highly variable meltwater distribution with two meltwater-rich layers in the upper 250 m and at around 450 m, connected by scattered meltwater-rich columns. We show that the hydrographic signature of meltwater is clearest in winter, when its presence can be unambiguously mapped throughout the water column. We argue that the buoyant meltwater provides near-surface nutrient that enhances productivity and heat that helps maintain polynyas, close to ice shelves across the Amundsen Sea. Therefore, although the processes determining the distribution of meltwater are challenging, they are important to represent in Earth system models.Publisher PDFPeer reviewe

    Sex-related differences in the postmolt distribution of Weddell seals (Leptonychotes weddellii ) in the southern Weddell Sea

    Get PDF
    The population of Weddell seals (Leptonychotes weddellii) in the southern Weddell Sea is in a unique position on the continental shelf edge, with vast shelf waters to the south, and deep Southern Ocean to the north. We describe sex-related differences in the winter distribution of this population, from data collected by 20 conductivity-temperature-depth satellite relay data loggers deployed in February 2011 at the end of the annual molt. The regional daily speed was calculated, and a state-space model was used to estimate behavioral states to positions along individuals’ tracks. GLMMs estimated that males and smaller individuals, diving in shallower water, traveled less far per day of deployment (males 14.6 ± 2.26 km/d, females 18.9 ± 2.42 km/d), and males were estimated to dive in shallower water (males 604 ± 382 m, females 1,875 ± 1,458 m). Males and smaller individuals were also estimated to be more resident; males spent an average 83.4% ± 7.7% of their time in a resident behavioral state, compared to females at 74.1% ± 7.1%. This evidence that male and female Weddell seals in the southern Weddell Sea are adopting different strategies has not been shown elsewhere along their circumpolar distribution

    Habitat partitioning in sympatric delphinids around the Falkland Islands : predicting distributions based on a limited data set

    Get PDF
    Funding: The field work was funded by the Darwin Initiative UK Overseas Territories Challenge Fund Project “Inshore Cetaceans of the Falkland Islands” (Project Ref: EIDCF019, administered jointly by Falklands Conservation & Mr Grant Munro), and Darwin Plus: Overseas Territories Environment and Climate Fund Project “Dolphins of the kelp: Data priorities for Falkland’s inshore cetaceans” (Project Ref: DPLUS042, administered by SAERI).Spatial modelling based on line transect data is a standard method for characterising marine mammal distributions and habitat preference. However, collecting the data required is costly and may be difficult in remote areas. Models based on habitat variables offer the potential to predict where the species will occur in areas outside the area of a localised survey. This has important implications for spatial management where decisions have to be made that affect wide areas over which comprehensive survey efforts may not be feasible. This study demonstrates that it is possible, using a spatially limited data set, to characterise habitat use and predict the distribution of two poorly known sympatric delphinids around the Falkland (Malvinas) Islands (FI), Commerson’s dolphins (Cephalorhynchus commersonii) and Peale’s dolphins (Lagenorhynchus australis). We used a Hurdle model approach to investigate the relationship between dolphin sightings (from a spatially restricted boat-based line transect survey) and environmental covariates. We then used the modelled relationships to predict the distribution and relative abundance of Commerson’s and Peale’s dolphins over the entire FI inshore waters. We compared the predicted distribution maps to independent sightings from a subsequent island-wide aerial line transect survey, and found a close match between predicted and observed distributions. Commerson’s dolphins preferred nearshore waters with strong tidal mixing and were most numerous close to river mouths and in upper inlets or channels. In contrast, Peale’s dolphins preferred deeper, well-stratified areas further from shore as well as nearshore waters with extensive kelp beds. While the two dolphin species are often considered sympatric, our results indicate fine-scale habitat partitioning based on specific habitat preferences, which is important to consider in further studies and marine spatial planning. We provide several methodological refinements to prepare transect sighting data for spatial analysis and implement Hurdle models more easily using the new “dshm” R-package. We also show the usefulness of such refinements applied to a carefully chosen spatially limited dataset as a cost-effective approach to elucidating species distribution patterns. Our methodology and software implementations can be easily applied to transect survey data of other marine and terrestrial taxa.Publisher PDFPeer reviewe

    Bimodal winter haul-out patterns of adult Weddell seals (Leptonychotes weddellii) in the southern Weddell Sea

    Get PDF
    Hauling out is an essential component of pinniped life-history. Haul-out behaviour may be affected by biological (e.g. sex, age and condition) and physical factors (e.g. food availability and environmental conditions), and identifying these factors may help explain the spatio-temporal distribution and habitat use of pinnipeds. The aim of this study is to describe observed winter haul-out patterns of adult Weddell seals in the Weddell Sea and investigate the role of potential predictors to gain insight into the way these animals interact with the physical environment in this region. We examined the haul-out behaviour in relation to available biological (i.e., diving effort, sex) and physical information (i.e., sun angle). Thirty-three satellite telemetry tags were deployed on adult Weddell seals in the southern Weddell Sea during February 2007, 2009 and 2011, following their annual moult recording information on the behavioural mode of the animal: at surface, hauled out or diving. At the end of the austral summer Weddell seals spent, on average, more than 40% of their time hauled out on the ice. Under constant light conditions, it appears that physiological factors drive sex differences in the timing and duration of haul-out behaviour, with females spending on average more time hauled out than males during daylight hours. This time spent hauled-out declined to around 15% in both sexes by the beginning of autumn and remained at this level with a clear nocturnal haul-out pattern during the winter. The time spent diving increased during this period, indicating an increase in foraging effort during the winter months, and led to a common haul-out pattern in both sexes over winter. We found a positive relationship between haul-out duration and the percentage of time spent diving prior to a haul-out in both sexes, with the exception of female daytime haul-outs early in the year

    Environmental drivers of population-level variation in the migratory and diving ontogeny of an Arctic top predator

    Get PDF
    This work is an output of the ARISE project (NE/P006035/1 and NE/P00623X/1), part of the Changing Arctic Ocean programme jointly funded by the UKRI Natural Environment Research Council (NERC) and the German Federal Ministry of Education and Research (BMBF). Fieldwork in Canada was carried out under a Canadian Council on Animal Care permit no. NAFC2017–2 and funded by Fisheries and Oceans Canada and a bursary from Department for Business, Energy and Industrial Strategy (BEIS) administered by the NERC Arctic Office. Fieldwork in the Greenland Sea was approved by the Greenland Ministry of Fisheries, Hunting and Agriculture and the Norwegian Food Safety Authority (permit no. 11546) as part of the Northeast Greenland Environmental Study Program 2017–2018 (by the Danish Centre for Environment and Energy at Aarhus University, The Greenland Institute of Natural Resources and the Environmental Agency for Mineral Resource Activities of the Government of Greenland) and financed by oil licence holders in the area.The development of migratory strategies that enable juveniles to survive to sexual maturity is critical for species that exploit seasonal niches. For animals that forage via breath-hold diving, this requires a combination of both physiological and foraging skill development. Here, we assess how migratory and dive behaviour develop over the first year of life for a migratory Arctic top predator, the harp seal Pagophilus groenlandicus, tracked using animal-borne satellite relay data loggers. We reveal similarities in migratory movements and differences in diving behaviour between 38 juveniles tracked from the Greenland Sea and Northwest Atlantic breeding populations. In both regions, periods of resident and transitory behaviour during migration were associated with proxies for food availability: sea ice concentration and bathymetric depth. However, while ontogenetic development of dive behaviour was similar for both populations of juveniles over the first 25 days, after this time Greenland Sea animals performed shorter and shallower dives and were more closely associated with sea ice than Northwest Atlantic animals. Together, these results highlight the role of both intrinsic and extrinsic factors in shaping early life behaviour. Variation in the environmental conditions experienced during early life may shape how different populations respond to the rapid changes occurring in the Arctic ocean ecosystem.Publisher PDFPeer reviewe
    corecore